Some structural results on linear arboricity

نویسندگان

  • Dieter Rautenbach
  • Lutz Volkmann
چکیده

A linear forest-factor F of a graph G is a spanning subgraph of G whose components are paths. A linear forest-decomposition of G is a collection :F = {F1, ••• , Fk } of linear forest-factors of G such that the edge set E (G) of G is the disjoint union of E (F1), •.• , E (Fk)' The linear ar borici ty la( G) of G is the minimum cardinality of a linear forest-decomposition of G. In this paper we evolve a method to construct a small linear forestdecomposition of a graph G from given linear forest-decompositions of two subgraphs that are linked by a cut vertex of G. As an application we determine the linear arboricity of block-cactus graphs which extends a result of Zelinka [5] (1986). Our results are connected to the "linear arboricity conjecture" of Akiyama, Exoo and Harary [2] (1980).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A status on the linear arboricity

In a linear forest, each component is a path. The linear arboricity ~(G) of a graph G is defined in Harary [8] as the minimum number of linear forests whose union is G. This invariant first arose in a study [i0] of information retrieval in file systems. A quite similar covering invariant which is well known to the linear arboricity is the arboricity of a graph, which is defined as the minimum n...

متن کامل

Linear Arboricity and Linear k-Arboricity of Regular Graphs

We find upper bounds on the linear k-arboricity of d-regular graphs using a probabilistic argument. For small k these bounds are new. For large k they blend into the known upper bounds on the linear arboricity of regular graphs.

متن کامل

The structure of plane graphs with independent crossings and its applications to coloring problems

If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is ∆ if ∆ ≥ 8, the list edge ...

متن کامل

The List Linear Arboricity of Planar Graphs

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having ∆ > 13, or for any planar graph with ∆ > 7 and without i-cycles for some i ∈ {3, 4, 5}....

متن کامل

The linear k-arboricity of the Mycielski graph M(Kn)

A linear k-forest of an undirected graph G is a subgraph of G whose components are paths with lengths at most k. The linear k-arboricity Of G, denoted by lak(G), is the minimum number of linear k-forests needed to partition the edge set E(G) of G. In case that the lengths of paths are not restricted, we then have the linear arboricity ofG, denoted by la(G). In this paper, the exact values of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1998